
A Multi-Encoding Approach for
LTL Symbolic Satisfiability Checking

Kristin Y. Rozier12∗ and Moshe Y. Vardi2

1 NASA Ames Research Center, Moffett Field CA, 94035, USA.
Kristin.Y.Rozier@nasa.gov, http://ti.arc.nasa.gov/profile/kyrozier/

2 Rice University, Houston, Texas 77005, USA.
vardi@cs.rice.edu, http://www.cs.rice.edu/ṽardi/

Abstract. Formal behavioral specifications written early in the system-design
process and communicated across all design phases have beenshown to increase
the efficiency, consistency, and quality of the system under development. To pre-
vent introducing design or verification errors, it is crucial to test specifications
for satisfiability. Our focus here is on specifications expressed in linear temporal
logic (LTL).
We introduce a novel encoding of symbolic transition-basedBüchi automata and
a novel, “sloppy,” transition encoding, both of which result in improved scalabil-
ity. We also define novel BDD variable orders based on tree decomposition of
formula parse trees. We describe and extensively test a new multi-encoding ap-
proach utilizing these novel encoding techniques to create30 encoding variations.
We show that our novel encodings translate to significant, sometimes exponential,
improvement over the current standard encoding for symbolic LTL satisfiability
checking.

1 Introduction
In property-based designformal properties, written in temporal logics such as LTL [35],
are written early in the system-design process and communicated across all design
phases to increase the efficiency, consistency, and quality of the system under develop-
ment [39, 41]. Property-based design and other design-for-verification techniques cap-
ture design intent precisely, and use formal logic properties both to guide the design
process and to integrate verification into the design process [28]. The shift to specifying
desired system behavior in terms of formal logic propertiesrisks introducing specifi-
cation errors in this very initial phase of system design, raising the need forproperty
assurance[34,39].

The need for checking for errors in formal LTL properties expressing desired sys-
tem behavior first arose in the context of model checking, wherevacuity checkingaims
at reducing the likelihood that a property that is satisfied by the model under verifi-
cation is an erroneous property [3, 31]. Property assuranceis more challenging at the
initial phases of property-based design, before a model of the implementation has been
specified.Inherent vacuity checkingis a set of sanity checks that can be applied to a

∗ Work contributing to this paper was completed at Rice University, Cambridge University, and
NASA, was supported in part by the Shared University Grid at Rice (SUG@R), and was funded
by NSF under Grant EIA-0216467, NASA’s Airspace Systems Program, and a partnership
between Rice University, Sun Microsystems, and Sigma Solutions, Inc.

2 Kristin Y. Rozier and Moshe Y. Vardi

set of temporal properties, even before a model of the systemhas been developed, but
many possible errors cannot be detected by inherent vacuitychecking [22].

A stronger sanity check for a set of temporal properties is LTL realizability check-
ing, in which we test whether there is an open system that satisfies all the properties
in the set [36], but such a test is very expensive computationally. In LTL satisfiability
checking, we test whether there is a closed system that satisfies all the properties in
the set. The satisfiability test is weaker than the realizability test, but its complexity is
lower; it has the same complexity as LTL model checking [44].In fact, LTL satisfiability
checking can be implemented via LTL model checking; see below.

Indeed, the need for LTL satisfiability checking is widely recognized [16, 27, 29,
32, 40]. Foremost, it serves to ensure that the behavioral description of a system is in-
ternally consistent and neither over- or under-constrained. If an LTL property is either
valid, or unsatisfiablethis must be due to an error. Consider, for example, the speci-
fication always(b1 → eventually b2), whereb1 andb2 are propositional formulas. If
b2 is a tautology, then this property is valid. Ifb2 is a contradiction, then this prop-
erty is unsatisfiable. Furthermore, the collective set of properties describing a system
must be satisfiable, to avoid contradictions between different requirements. Satisfiabil-
ity checking is particularly important when the set of properties describing the design
intent continues to evolve, as properties are added and refined, and have to be checked
repeatedly. Because of the need to consider large sets of properties, it is critical that the
satisfiability test bescalable, and able to handle complex temporal properties. This is
challenging, as LTL satisfiability is known to be PSPACE-complete [44].

As pointed out in [40], satisfiability checking can be performed via model check-
ing: auniversal model(that is, a model that allows all possible traces) does not satisfy
a linear temporal property¬ f precisely whenf is satisfiable. In [40] we explored the
effectiveness of model checkers as LTL satisfiability checkers. We compared there the
performance of explicit-state and symbolic model checkers. Both use the automata-
theoretic approach [48] but in a different way. Explicit-state model checkers translate
LTL formulas to Büchi automata explicitly and then use an explicit graph-search algo-
rithm [13]. For satisfiability checking, the construction of the automaton is the more
demanding task. Symbolic model checkers construct symbolic encodings of automata
and then use a symbolic nonemptiness test. The symbolic construction of the automaton
is easy, but the nonemptiness test is computationally demanding. The extensive set of
experiments described in [40] showed that the symbolic approach to LTL satisfiability
is significantly superior to the explicit-state approach interms of scalability.

In the context of explicit-state model checking, there has been extensive research on
optimized construction of automata from LTL formulas [14, 15, 23, 25, 26, 43, 45, 46],
where a typical goal is to minimize the size of constructed automata [47]. Optimizing
the construction of symbolic automata is more difficult, as the size of the symbolic rep-
resentation does not correspond directly to its optimality. An initial symbolic encoding
of automata was proposed in [8], but the optimized encoding we call CGH, proposed
by Clarke, Grumberg, and Hamaguchi [12], has become the de facto standard encod-
ing. CGH encoding is used by model checkers such as CadenceSMV and NuSMV, and
has been extended to symbolic encodings of industrial specification languages [11].
Surprisingly, there has been little follow-up research on this topic.

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 3

In this paper, we propose novel symbolic LTL-to-automata translations and utilize
them in a new multi-encoding approach to achieve significant, sometimes exponential,
improvement over the current standard encoding for LTL satisfiability checking. First
we introduce and prove the correctness of a novel encoding ofsymbolic automata in-
spired by optimized constructions of explicit automata [14,26]. While the CGH encod-
ing usesGeneralized Büchi Automata(GBA), our new encoding is based onTransition-
Based Büchi Automata(TGBA). Second, inspired by work on symbolic satisfiability
checking for modal logic [33], we introduce here a novelsloppyencoding of symbolic
automata, as opposed to thefussyencoding used in CGH. Sloppy encoding uses looser
constraints, which sometimes results in smaller BDDs. The sloppy approach can be ap-
plied both to GBA-based and TGBA-based encodings, providedthat one uses negation-
normal form (NNF), [45], rather than the Boolean normal form(BNF) used in CGH.
Finally, we introduce several new variable-ordering schemes, based on tree decompo-
sition of the LTL parse tree, inspired by observations that relate tree decompositions to
BDD variable ordering [19]. The combination of GBA/TGBA, fussy/sloppy, BNF/NNF,
and different variable orders yields a space of 30 possible configurations of symbolic
automata encodings. (Not all combinations yield viable configurations.)

Since the value of novel encoding techniques lies in increasedscalability, we evalu-
ate our novel encodings in the context of LTL satisfiability checking, utilizing a compre-
hensive and challenging collection of widely-used benchmark formulas [9, 16, 27, 40].
For each formula, we perform satisfiability checking using all 30 encodings. (We use
CadenceSMV as our experimental platform.) Our results demonstrate conclusively that
no encoding performs best across our large benchmark suite.Furthermore, no single
approach–GBA vs. TGBA, fussy vs. sloppy, BNF vs. NNF, or any one variable order,
is dominant. This is consistent with the observation made byothers [1, 47], that in the
context of symbolic techniques one typically does not find a “winning” algorithmic con-
figuration. In response, we developed a multi-encoding tool, PANDA, which runs sev-
eral encodings in parallel, terminating when the first process returns. Our experiments
demonstrate conclusively that the multi-encoding approach using the novel encodings
invented in this paper achieves substantial improvement over CGH, the current standard
encoding; in fact PANDA significantly bested the native LTL model checker built into
CadenceSMV.

The structure of this paper is as follows. We review the CGH encoding [12] in
Section 2. Next, in Section 3, we describe our novel symbolicTGBA encoding. We
introduce our novel sloppy encoding and our new methods for choosing BDD variable
orderings and discuss our space of symbolic encoding techniques in Section 4. After
setting up our scalability experiment in Section 5, we present our test results in Section
6, followed by a discussion in Section 7. Though our construction can be used with
different symbolic model checking tools, in this paper, we follow the convention of [12]
and give examples of all constructions using the SMV syntax.

2 Preliminaries

We assume familiarity with LTL [18]; For convenience, Appendix A defines LTL se-
mantics. We use two normal forms:

4 Kristin Y. Rozier and Moshe Y. Vardi

Definition 1 Boolean Normal Form (BNF) rewrites the input formula to use only¬,
∨, X,U, andF . In other words, we replace∧,→, R, andG with their equivalents:

g1 ∧ g2 ≡ ¬(¬g1 ∨ ¬g2)

g1→ g2 ≡ ¬g1 ∨ g

g1 R g2 ≡ ¬(¬g1U ¬g2)

Gg1 ≡ ¬F¬g1

Definition 2 Negation Normal Form (NNF)pushes negation inwards until only atomic
propositions are negated, using the following rules:

¬¬g ≡ g

¬(g1 ∧ g2) ≡ (¬g1) ∨ (¬g2)

¬(g1 ∨ g2) ≡ (¬g1) ∧ (¬g2)

(g1→ g2) ≡ (¬g1) ∨ g2

¬(Xg) ≡ X(¬g)

¬(g1Ug2) ≡ (¬g1R¬g2)

¬(g1Rg2) ≡ (¬g1U¬g2)

¬(Gg) ≡ F (¬g)

¬(F g) ≡ G(¬g)

In automata-theoretic model checking, we represent LTL formulas with Büchi automata.

Definition 3 A Generalized B̈uchi Automaton (GBA) is a quintuple(Q, Σ, δ,Q0, F),
where:

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ ⊆ Q× Σ × Q is a transition relation.

• Q0 ⊆ Q is a set of initial states.

• F ⊆ 2Q is a set of accepting state sets.

A run of a Büchi automaton A over an infinite traceπ = π0, π1, π2, . . . ∈ Σ is a sequence
q0, q1, q2, . . . of states such that q0 ∈ Q0, and〈qi , πi, qi+1〉 ∈ δ for all i ≥ 0. A accepts
π if the run overπ visits states in every set in F infinitely often. We denote theset of
infinite traces accepted by A byLω(A).

A trace satisfying LTL formulaf is an infinite run over the alphabetΣ = 2Prop, where
Prop is the underlying set of atomic propositions. We denote bymodels(f) the set of
traces satisfyingf . The next theorem relates the expressive power of LTL to thatof
Büchi automata.

Theorem 1 [49] Given an LTL formula f , we can construct a generalized Büchiau-
tomaton Af =

〈

Q, Σ, δ,Q0, F
〉

such that|Q| is in 2O(| f |),Σ = 2Prop, andLω(Af) is exactly
models(f).

This theorem reduces LTL satisfiability checking to automata-theoretic nonemptiness
checking, asf is satisfiable iffmodels(f) , ∅ iff Lω(Af) , ∅.

LTL satisfiability checking relates to LTL model checking asfollows. We use a
universal model Mthat generates all traces overProp such thatLω(M) = (2Prop)ω.
The code for this model appears in [40] and Appendix B. We now have thatM doesnot
satisfy¬ f iff f is satisfiable. We use a symbolic model checker to check the formula¬ f
againstM; f is satisfiable precisely when the model checker finds a counterexample.

CGH encodingIn this paper we focus on LTL to symbolic Büchi automata compilation.
We recap the CGH encoding [12], which assumes that the formula f is in BNF, and then
forms a symbolic GBA. We first define theCGH-closureof an LTL formula f as the set
of all subformulas off (including f itself), where we also add the formulaX(gU h)

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 5

for each subformula of the formgU h. TheX-formulas in the CGH-closure off are
calledelementaryformulas.

We declare a Boolean SMV variableELXg for each elementary formulaXg in the
CGH-closure off . Also, each atomic proposition inf is declared as a Boolean SMV
variable. We define an auxiliary variableSh for every formulah in the CGH-closure
of f . (Auxiliary variables are substituted away by SMV and do notrequired allocated
BDD variables.) The characteristic function for an auxiliary variableSh is defined as
follows:
Sh = p if p ∈ AP Sh =!Sg if h = ¬g
Sh = ELh if h is a formulaXg

Sh = Sg1|Sg2 if h = g1 ∨ g2

Sh = Sg2|(Sg1&SX(g1 U g2)) if h = g1U g2

We now generate the SMV modelM f :
MODULE main

VAR

a: boolean; /*declare a Boolean var for each atomic prop in f */

EL_Xg: boolean; /*declare a Boolean var for every formula Xg in the CGH-closure*/

DEFINE /*auxiliary vars according to characteristic function */

S_h := ...

TRANS /*for every formula Xg in the CGH-closure, add a transition constraint*/

(S_Xg = next(S_g))

FAIRNESS !S_gUh | S_h /*for each subformula gUh */

FAIRNESS TRUE /*or a generic fairness condition otherwise*/

SPEC !(S_f & EG true) /*end with a SPEC statement*/

The traces ofM f correspond to the accepting runs ofAf , starting from arbitrary states.
Thus, satisfiability off corresponds to nonemptiness ofM f , starting from an initial
state. We can model check such nonemptiness withSPEC !(S f & EG true). A coun-
terexample is an infinite trace starting at a state whereS f holds. Thus, the model checker
returns a counterexample that is a trace satisfyingf .

Remark 1 While the syntax we use is shared by CadenceSMV and NuSMV, theprecise
semantics of CTL model checking in these model checkers is not fully documented and
there are some subtle but significant differences between the two tools. Therefore, we
use CadenceSMV semantics here and describe these subtleties in Appendix C.

3 A Symbolic Transition-Based Generalized B̈uchi Automata
(TGBA) Encoding

We now introduce a novel symbolic encoding, referred to as TGBA, inspired by the
explicit-state transition-based Generalized Büchi automata of [26]. Such automata are
used by SPOT [17], which was shown experimentally [40] to be the best explicit LTL
translator for satisfiability checking.

Definition 4 A Transition-Based Generalized B̈uchi Automaton (TGBA) is a quin-
tuple(Q, Σ, δ,Q0, F), where:

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ ⊆ Q× Σ × Q is a transition relation.

• Q0 ⊆ Q is a set of initial states.

• F ⊆ 2δ is a set of accepting transitions.

6 Kristin Y. Rozier and Moshe Y. Vardi

A run of a TGBA over an infinite traceπ = π0, π1, π2, . . . ∈ Σ is a sequence〈q0, π0, q1〉,
〈q1, π1, q2〉, 〈q2, π2, q3〉, . . . of transitions inδ such that q0 ∈ Q0. The automaton accepts
π if it has a run overπ that traverses some transition from each set in F infinitely often.

The next theorem relates the expressive power of LTL to that of TGBAs.

Theorem 2 [14,26]Given an LTL formula f , we can construct a TGBA Af =
〈

Q, Σ, δ,
Q0, F

〉

such that|Q| is in 2O(| f |), Σ = 2Prop, andLω(Af) is exactly models(f).

Expressing acceptance conditions in terms of transitions rather than states enables a
significant reduction in the size of the automata corresponding to LTL formulas [14,26].

Our new encoding of symbolic automata, based on TGBAs, assumes that the input
formula f is in NNF. (This is due to the way that the satisfaction ofU-formulas is
handled by means of promise variables; see below.) As in CGH,we first define the
closureof an LTL formula f . In the case of TGBAs, however, we simply define the
closure to be the set of all subformulas off (including f itself). Note that, unlike in the
CGH encoding,U- andF - formulas do not require the introduction of newX-formulas.

The set of elementary formulas now contains:f ; all U-, R-, F -, G-, andGF -
subformulas in the closure off , as well as all subformulasg whereXg is in the closure
of f . Note that we treat the commonGF combination as a single operator.

Again, we declare a Boolean SMV variableELg for every elementary formulag
as well as Boolean variables for each atomic proposition inf . In addition, we declare
a Boolean SMVpromise variable Pg for everyU-, F -, andGF -subformula in the
closure. These formulas are used to define fairness conditions. Intuitively, Pg holds
wheng is a promise for the future that is not yet fulfilled. IfPg does not hold, then the
promise must be fulfilled immediately. To ensure satisfaction of eventualities we require
that each promise variablePg is false infinitely often. The TGBA encoding creates fewer
EL variables than the CGH encoding, but it does add promise variables.

Again, we define an auxiliary variableSh for every formulah in the closure off .The
characteristic function forSh is defined as in the CGH encoding, with the following
changes: Sh = Sg1&Sg2 if h = g1 ∧ g2

Sh = next(ELg) if h = Xg

Sh = Sg2|(Sg1& Pg1 U g2&(next(ELg1 U g2))) if h = g1U g2

Sh = Sg2&(Sg1|(next(ELg1 R g2))) if h = g1 R g2

Sh = Sg&(next(ELG g)) if h = G g

Sh = Sg|(PF g&next(ELF g)) if h = F g

Sh = (next(ELGF g))&(Sg|PGF g) if h = GF g

Since we reason directly over the temporal subformulas off (and not overXg for
temporal subformulag as in CGH), the transition relation associates elementary for-
mulas with matching elements of our characteristic function. Finally, we generate our
symbolic TGBA; here is our SMV modelM f :

MODULE main

VAR /*declare a boolean variable for each atomic proposition in f*/

a : boolean;

...

VAR /*declare a new variable for each elementary formula*/

EL_f : boolean; /*f is the input LTL formula*/

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 7

EL_g1 : boolean; /*g is an X-, F-, U-, or GF-formula*/

...

DEFINE /*characteristic function definition*/

S_g = ...

...

TRANS /*for each EL-var, generate a line here*/

(EL_g1 = S_g1) & /*a line for every EL variable*/

...

FAIRNESS (!P_g1) /*fairness constraint for each promise variable*/

...

FAIRNESS TRUE /*only needed if there are no promise variables*/

SPEC !(EL_f & EG TRUE)

Symbolic TGBAs can only be created for NNF formulas because the model checker
tries to guess a sequence of values for each of the promise variables to satisfy the subfor-
mulas, which does not work for negativeU-formulas. (This is also the case for explicit
state model checking; SPOT also requires NNF for TGBA encoding [14].) Consider the
formula f = ¬(aU b) and the tracea=1,b=0, a=1,b=1, ... Clearly, (aU b) holds
in the trace, sof fails in the trace. If, however, we choseP aUb to be false at time 0,
thenEL aUb is false at time 0, which means thatf holds at time 0. The correctness of
our construction is summarized by the following theorem.

Theorem 3 Let Mf be the SMV program made by the TGBA encoding for LTL formula
f . Then Mf does not satisfy the specification!(EL f & EG true) iff f is satisfiable.

The proof of this theorem appears in Appendix D.

4 A Set of 30 Symbolic Automata Encodings

Our novel encodings are combinations of four components: (1) Normal Form: BNF or
NNF, described above, (2) Automaton Form: GBA or TGBA, described above, (3) Tran-
sition Form: fussy or sloppy, described below, and (4) Variable Order: default, naı̈ve,
LEXP, LEXM, MCS-MIN, MCS-MAX, described below. In total, we have 30 novel encodings,
since BNF can only be used with fussy-encoded GBAs, as explained below. CGH cor-
responds to BNF/fussy/GBA; we encode this combination with all six variable orders.

Automaton FormAs discussed earlier, CGH is based on GBA, in combination with
BNF. We can combine, however, GBA also with NNF. For this, we need to expand the
characteristic function for symbolic GBAs in order to form them from NNF formulas:

Sh = Sg1&Sg2 if h = g1 ∧ g2

Sh = Sg2&(Sg1|SX(g1 R g2)) if h = g1 R g2

Sh = Sg&SX(Gg) if h = Gg

Sh = Sg|SX(Fg) if h = F g

Since our focus here is on symbolic encoding, PANDA, unlike CadenceSMV, does
not apply formula rewriting and related optimizations; rather, PANDA’s symbolic au-
tomata are created directly from the given normal form of theformula. Formula rewrit-
ing may lead to further improvement in PANDA’s performance.

Sloppy Encoding: A Novel Transition FormCGH employs iff-transitions, of the form
TRANS (EL g=(S g)). We refer to this asfussyencoding. For formulas in NNF, we can
use only-if transitions of the formTRANS (EL g->(S g)), which we refer to assloppy
encoding. A similar idea was shown to be useful in the contextof modal satisfiability

8 Kristin Y. Rozier and Moshe Y. Vardi

solving [33]. Sloppy encoding increases the level of non-determinism, yielding a looser,
less constrained encoding of symbolic automata, which in many cases results in smaller
BDDs. A side-by-side example of the differences between GBA and TGBA encodings
(demonstrating the sloppy transition form) for formulaf = ((Xa)&(bU (!a))) is given
in Figures 1-2.

MODULE main

/*formula: ((X (a)) & ((b)U (!(a))))*/

VAR /*a Boolean var for each prop in f*/

a : boolean;

b : boolean;

VAR /*a var EL_X_g for each formula (X g) in

el_list w/primary op X, U, R, G, or F*/

EL_X_a : boolean;

EL_X__b_U_NOT_a : boolean;

DEFINE

/*each S_h in the characteristic function*/

S__X_a__AND__b_U_NOT_a :=

(EL_X_a) & (S__b_U_NOT_a);

S__b_U_NOT_a :=

(!(a)) | (b & EL_X__b_U_NOT_a);

TRANS /*a line for each (X g) in el_list*/

(EL_X_a -> (next(a))) &

(EL_X__b_U_NOT_a -> (next(S__b_U_NOT_a)))

FAIRNESS (!S__b_U_NOT_a | (!(a)))

SPEC !(S__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 1.NNF/sloppy/GBA encoding for CadenceSMV

MODULE main

/*formula: ((X (a))& ((b)U (!(a))))*/

VAR /*a Boolean var for each prop in f*/

a : boolean;

b : boolean;

VAR /*a var for each EL_var in el_list*/

EL__X_a__AND__b_U_NOT_a : boolean;

P__b_U_NOT_a: boolean;

EL__b_U_NOT_a : boolean;

DEFINE

/*each S_h in the characteristic function*/

S__X_a__AND__b_U_NOT_a :=

(S_X_a) & (EL__b_U_NOT_a);

S_X_a := (next(a));

S__b_U_NOT_a := (((!(a)))

| (b& P__b_U_NOT_a & (next(EL__b_U_NOT_a))));

TRANS /*a line for each EL_var in el_list*/

(EL__X_a__AND__b_U_NOT_a ->

(S__X_a__AND__b_U_NOT_a)) &

(EL__b_U_NOT_a -> (S__b_U_NOT_a))

FAIRNESS (!P__b_U_NOT_a)

SPEC !(EL__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 2.NNF/sloppy/TGBA encoding for CadenceSMV

A New Way of Choosing BDD Variable OrdersSymbolic model checkers search for
a fair trace in the model-automaton product using a BDD-based fixpoint algorithm, a
process whose efficacy is highly sensitive to variable order [7]. Finding an optimal BDD
variable order is NP-hard, and good heuristics for variableordering are crucial.

(a) GBA variable graph (b) TGBA variable graph

Fig. 3. Graphs in (a) and (b) were both formed from the parse tree forf = ((Xa) ∧ (bU ¬a)).

Recall that we define state variables in the symbolic model for only certain subfor-
mulas:p ∈ AP, EL g, andP g for some subformulasg. We form the variable graph by
identifying nodes in the input-formula parse tree that correspond to the primary opera-
tors of those subformulas. Since we declare different variables for the GBA and TGBA
encodings, the variable graph for a formulaf may vary depending on the automaton
form we choose. Figure 3 displays the GBA and TGBA variable graphs for an example
formula, overlaid on the parse tree for this formula. We connect each variable-labeled

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 9

vertex to its closest variable-labeled vertex descendant(s), skipping over vertices in the
parse tree that do not correspond to state variables in our automaton construction. We
create one node per subformula variable, irrespective of the number of occurrences of
the subformula; for example, we create only one node for the propositiona in Figure 3.

We implement five variable ordering schemes, all of which take the variable graph
as input. We compare these to thedefaultheuristic of CadenceSMV. Thenaı̈vevariable
order is formed directly from a pre-order, depth-first traversal of the variable graph. We
derive four additional variable-ordering heuristics by repurposing node-ordering algo-
rithms designed for graph triangulation [30].3 We use two variants of a lexicographic
breadth-first search algorithm: variantsperfect(LEXP) andminimal (LEXM). LEXP labels
each vertex in the variable graph with its already-ordered neighbors; the unordered
vertex with the lexicographic largest label is selected next in the variable order.LEXM
operates similarly, but labels unordered vertices with both their neighbors and also all
vertices that can be reached by a path of unordered vertices with smaller labels. The
maximum-cardinality search (MCS) variable ordering scheme differs in the vertex selec-
tion criterion, selecting the vertex in the variable graph adjacent to the highest number
of already ordered vertices next. We seed MCS with an initialvertex, chosen either to
have themaximum(MCS-MAX) or minimum(MCS-MIN) degree.

5 Experimental Methodology

Test MethodsEach test was performed in two steps. First, we applied our symbolic
encodings to the input formula. Second, each symbolic automaton and variable order
file pair was checked by CadenceSMV. Since encoding time is minimal and heavily
dominated by model-analysis time (the time to check the model for nonemptiness to
determine LTL satisfiability) we focus exclusively on the latter here.

Platform We ran all tests on Shared University Grid at Rice (SUG@R), anIntel Xeon
compute cluster.4 SUG@R is comprised of 134 SunFire x4150 nodes, each with two
quad-core Intel Xeon processors running at 2.83GHz and 16GBof RAM per processor.
The OS is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Each testwas run with exclusive
access to one node. Times were measured using the Unixtime command.

Input Formulas We employed a widely-used [9, 16, 27, 40] collection of benchmark
formulas, established by [40]. All encodings were tested using three types of scalable
formulas: random, counter, and pattern. Definitions of these formulas are repeated for
convenience in Appendix B. Our test set includes 4 counter and 9 pattern formula varia-
tions, each of which scales to a large number of variables, and 60,000 random formulas.

Correctness In addition to proving the correctness of our algorithm, thecorrectness
of our implementation was established by comparing for every formula in our large
benchmark suite, the results (either SAT or UNSAT) returnedby all encodings studied
here, as well as the results returned by CadenceSMV for checking the same formula as
an LTL specification for the universal model. We never encountered an inconsistency.

3 Graph triangulation implementation coded by the Kavraki Lab at Rice University.
4 http://rcsg.rice.edu/sugar/

10 Kristin Y. Rozier and Moshe Y. Vardi

6 Experimental Results

Our experiments demonstrate that the novel encoding methods we have introduced sig-
nificantly improve the translation of LTL formulas to symbolic automata, as measured
in time to check the resulting automata for nonemptiness andthe size of the state space
we can check. No single encoding, however, consistently dominates for all types of for-
mulas. Instead, we find that different encodings are better suited to different formulas.
Therefore, we recommend using a multi-encoding approach, avariant of the multi-
engine approach [37], of running all encodings in parallel and terminating when the
first job completes. We call our tool PANDA for “Portfolio Approach to Navigate the
Design of Automata.”

Seven configurations are not competitiveWhile we can not predict the best encodings,
we can reliably predict the worst. The following encodings were never optimal for any
formulas in our test set. Thus, out of our 30 possible encodings, we rule out these seven:

– BNF/fussy/GBA/LEXM (essentially CGH withLEXM)
– NNF/fussy/GBA/LEXM
– NNF/fussy/TGBA/LEXM
– NNF/sloppy/GBA/LEXM

– NNF/fussy/TGBA/MCS-MAX
– NNF/sloppy/TGBA/MCS-MAX
– NNF/sloppy/TGBA/MCS-MIN

NNF is the best normal form, most (but not all) of the time.NNF encodings were
always better for all counter and pattern formulas; see, forexample, Figure 4. Figure 5
demonstrates the use of both normal forms in the optimal encodings chosen by PANDA
for random formulas. BNF encodings were occasionally significantly better than NNF;
the solid point in Figure 5 corresponds to a formula for whichthe best BNF encoding
was more than four times faster than the best NNF encoding. NNF was best much more
often than BNF, likely because using NNF has the added benefitthat it allows us to
employ our sloppy encoding and TGBAs, which often carry their own performance
advantages.

Number of Variables

M
ed

ia
n

M
od

el
A

na
ly

si
s

T
im

e
(s

ec
on

ds
)

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

PANDA-bnf
CadenceSMV
PANDA-nnf

R Pattern Formulas

PANDA-bnf

PANDA-nnf

CadenceSMV

Fig. 4. Median model analysis time for
R(n) =

∧n
i=1 (GF pi ∨ FGpi+1) for PANDA

NNF/sloppy/GBA/naı̈ve, CadenceSMV, and
the best BNF encoding.

BNF Encodings Model Analysis Times (sec)

N
N

F
E

nc
od

in
gs

M
od

el
A

na
ly

si
s

T
im

es
(s

ec
)

10-1 100 101 102 10310-1

100

101

102

103

Best BNF encoding vs best NNF encoding:
3-variable, 160 length random formulas

Fig. 5. Best encodings of 500 3-variable, 160
length random formulas. Points fall below the
diagonal when NNF is better.

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 11

No automaton form is best.Our TGBA encodings dominated forR2, S, andU pattern
formulas and both types of 3-variable counter formulas. Forinstance, the log-scale plot
in Figure 6 shows that PANDA’s median model analysis time forR2 pattern formulas
grows subexponentially as a function of the number of variables, while CadenceSMV’s
median model analysis time for the same formulas grows exponentially. (The best of
PANDA’s GBA encodings is also graphed for comparison.) GBA encodings are better
for other pattern formulas, both types of 2-variable counter formulas, and the majority
of random formulas; Figure 7 demonstrates this trend for 180length random formulas.

Number of Variables

M
ed

ia
n

M
od

el
A

na
ly

si
s

T
im

e
(s

ec
on

ds
)

0 100 200 300 400 500 600 700 800 900 1000

10-2

10-1

100

101

102

103

PANDA-tgba
PANDA-gba
CadenceSMV

R2 Pattern Formulas

N

PANDA-tgba

CadenceSMV

PANDA-gba

Fig. 6. R2(n) = (..(p1 R p2) R . . .) R pn.
PANDA’s NNF/sloppy/TGBA/LEXP encoding
scales better than the best GBA encod-
ing, NNF/sloppy/GBA/naı̈ve, and exponen-
tially better than CadenceSMV.

GBA Encodings Model Analysis Times (sec)

T
G

B
A

E
nc

od
in

gs
M

od
el

A
na

ly
si

s
T

im
es

(s
ec

)
100 101 102 103100

101

102

103

Best TGBA encoding vs best GBA encoding:
3-variable, 180 length random formulas

Fig. 7. Best encodings of 500 3-variable, 180
length random formulas.

No transition form is bestSloppy is the best transition form for all pattern formulas.For
instance, the log-scale plot of Figure 8 illustrates that PANDA’s median model analysis
time forU pattern formulas grows subexponentially as a function of the number of vari-
ables, while CadenceSMV’s median model analysis time for the same formulas grows
exponentially. Fussy encoding is better for all counter formulas. The best encodings of
random formulas were split between fussy and sloppy. Figure9 demonstrates this trend
for 140 length random formulas.

No variable order is best, butLEXM is worst. The best encodings for our benchmark
formula set were split between five variable orders. The naı̈ve and default orders proved
optimal for more random formulas than the other orders. Figure 10 demonstrates that
neither the naı̈ve order nor the default order is better thanthe other for random formulas.
The naı̈ve order was optimal forE, Q, R, U2, andS patterns.MCS-MAX is optimal for 2-
and 3-variable linear counters. TheLEXP variable order dominated forC1, C2, U, and
R2 pattern formulas, as well as for 2- and 3-variable counter formulas, yet it was rarely
best for random formulas. Figure 11 demonstrates the markeddifference in scalability

12 Kristin Y. Rozier and Moshe Y. Vardi

Number of Variables

M
ed

ia
n

M
od

el
A

na
ly

si
s

T
im

e
(s

ec
on

ds
)

200 400 600 800 1000
10-2

10-1

100

101

102

103

PANDA-sloppy
CadenceSMV

U Pattern Formulas
CadenceSMV

PANDA-sloppy

Fig. 8. U(n) = (. . . (p1 U p2) U . . .) U pn.
PANDA’s NNF/sloppy/TGBA/LEXP scalables
exponentially better than CadenceSMV.

Fussy Encodings Model Analysis Times (sec)

S
lo

pp
y

E
nc

od
in

gs
M

od
el

A
na

ly
si

s
T

im
es

(s
ec

)

10-2 10-1 100 101 102 10310-2

10-1

100

101

102

103

Best fussy encoding vs best sloppy encoding:
3-variable, 140 length random formulas

Fig. 9. Best encodings of 500 3-variable, 140
length random formulas. Points fall below the
diagonal when sloppy encoding is best.

provided by using theLEXP order over running CadenceSMV on 3-variable counter
formulas. We can analyze much larger models with PANDA usingLEXP than with the
native CadenceSMV encoding before memory-out. We never found theLEXM order to
be the single best encoding for any formula.

Naive Encodings Model Analysis Times (sec)

D
ef

au
lt

E
nc

od
in

gs
M

od
el

A
na

ly
si

s
T

im
es

(s
ec

)

100 101 102 103 104100

101

102

103

104

Best encodings with naive vs default variable orders
3-variable, 195 length random formulas

Fig. 10. Best encodings of 500 3-variable, 195
length random formulas. Points fall above the
diagonal when naı̈ve variable order is best.

M
ax

im
um

S
ta

te
S

pa
ce

A
na

ly
ze

d

0

100000

200000

300000

400000

500000

CadenceSMV

PANDA-lexp

3-variable Counter Formulas

Fig. 11. Maximum states analyzed before
space-out. CadenceSMV quits at 10240 states.
PANDA’s NNF/fussy/TGBA/LEXP scales to
491520 states.

A formula class typically has a best encoding, but predictions are difficult While each
of our pattern and counter formulas had a best (or a pair of best) encodings, which
remained consistent as we scaled the formulas, we found thatwe could not reliably
predict the best encoding using any statistics gathered from parsing, such as operator

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 13

counts or ratios. For example, we found that the best encoding for a pattern formula
was not necessarily the best for a randomly-generated formula comprised of the same
temporal operators. We surmise that the best encoding is tied to the structure of the
formula on a deeper level; developing an accurate heuristicis left to future work.

There is no single best encoding; a multi-encoding approachis clearly superior We
implement a novel multi-encoding approach: our new PANDA tool creates several en-
codings of a formula and uses a symbolic model checker to check them for satisfiability
in parallel, terminating when the first check completes. Ourexperimental data supports
this multi-encoding approach. Figures 4, 6, and 8 highlightthe significant decrease in
CadenceSMV model analysis time forR, R2, andU pattern formulas, while Figure 11
demonstrates increased scalability in terms of state spaceusing counter formulas. Al-
together, we demonstrate that a multi-encoding approach isdramatically more scalable
than the current state-of-the-art. The increase in scalability is dependant on the spe-
cific formula, though for some formulas PANDA’s model analysis time is exponentially
better than CadenceSMV’s model analysis time for the same class of formulas.

7 Discussion

This paper brought attention to the issue of scalable construction of symbolic automata
for LTL formulas in the context of LTL satisfiability checking. We defined novel en-
codings and novel BDD variable orders for accomplishing this task. We explored the
impact of these encodings, comprised of combinations of normal forms, automaton
forms, transition forms, and combined with variable orders. We showed that each can
have a significant impact on performance. At the same time, weshowed that no single
encoding outperforms all others and showed that a multi-encoding approach yields the
best result, consistently outperforming the native translation of CadenceSMV.

We do not claim to have exhaustively covered the space of possible encodings
of symbolic automata. Several papers on the automata-theoretic approach to LTL de-
scribe approaches that could be turned into alternative encodings of symbolic automata,
cf. [5,21,23,42]. The advantage of the multi-encoding approach we introduced here is
its extensibility; adding additional encodings is straightforward. The multi-encoding
approach can also be combined with different back ends. In this paper we used Ca-
denceSMV as a BDD-based back end; using another symbolic back end (cf. [16]) or
a SAT-based back end (cf. [4]) would be an alternative approach, as both BDD-based
and SAT-based back ends require symbolic automata. Since LTL serves as the basis for
industrial languages such as PSL and SVA, the encoding techniques studied here may
also serve as the basis for novel encodings of such languages, cf. [10,11].

In this paper we examined our novel symbolic encodings of LTLin the context
of satisfiability checking. An important difference between satisfiability checking and
model checking is that in the former we expect to have to handle much larger formulas,
since we need to consider the conjunction of properties. Also, in model checking the
size of the symbolic automata can be dwarfed by the size of themodel under verifica-
tion. Thus, the issue of symbolic encoding of automata in thecontext of model checking
deserves a separate investigation.

14 Kristin Y. Rozier and Moshe Y. Vardi

References

1. N. Amla, X. Du, A. Kuehlmann, R.P. Kurshan, and K.L. McMillan. An analysis of SAT-
based model checking techniques in an industrial environment. In CHARME, LNCS 3725,
pages 254–268. Springer, 2005.

2. P. Arcaini, A. Gargantini, and E. Riccobene. Automatic review of abstract state machines by
meta property verification. InNFM, NASA/CP-2010-216215, pages 4–13, April 2010.

3. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL
formulas.FMSD 18, (2):141–162, 2001.

4. A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. InFMICS 66:2,
ENTCS, 2002.

5. R. Bloem, A. Cimatti, I. Pill, and M. Roveri. Symbolic implementation of alternating au-
tomata.IJFCS 18, (4):727–743, 2007.

6. R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli,and M. Weiglhofer. Automatic
hardware synthesis from specifications: A case study. InDATE, pages 1188–1193, 2007.

7. R.E. Bryant. Graph-based algorithms for Boolean-function manipulation.IEEE TC C-35,
(8):677–691, 1986.

8. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-
ing: 1020 states and beyond.Inform. and Computation 98, (2):142–170, Jun 1992.

9. J. Cichon, A. Czubak, and A. Jasinski. Minimal Büchi automata for certain classes of LTL
formulas.DepCoS 0, pages 17–24, 2009.

10. A. Cimatti, M. Roveri, S. Semprini, and S. Tonetta. From PSL to NBA: A modular symbolic
encoding. InFMCAD, 2006.

11. A. Cimatti, M. Roveri, and S. Tonetta. Syntactic optimizations for PSL verification. In
TACAS, pages 505–518, 2007.

12. E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another lookat LTL model checking.
Formal Methods in System Design 10, (1):47–71, 1997.

13. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms
for the verification of temporal properties. InCAV, LNCS 531, p233–242. Springer, 1990.

14. J-M. Couvreur. On-the-fly verification of Linear Temporal Logic. In FM, p253-271, 1999.
15. N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for Linear Tem-

poral Logic. InCAV, LNCS 1633, pages 249–260. Springer, 1999.
16. M. De Wulf, L. Doyen, N. Maquet, and J. Raskin. Antichains: Alternative algorithms for

LTL satisfiability and model-checking. InTACAS, pages 63–77, 2008.
17. A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model checking library using

Transition-Based Generalized Büchi Automata. InMASCOTS, pages 76–83, 2004.
18. E.A. Emerson. Temporal and modal logic. InHandbook of Theoretical Computer Science,

volume B, chapter 16, pages 997–1072. Elsevier, MIT Press, 1990.
19. A. Ferrara, G. Pan, and M. Y. Vardi. Treewidth in verification: Local vs. global. InLPAR,

LNCS 3835, pages 489–503. Springer, 2005.
20. E. Filiot, N. Jin, and J-F. Raskin. An antichain algorithm for ltl realizability. InCAV, pages

263–277, 2009.
21. M. Fisher. A normal form for temporal logics and its applications in theorem-proving and

execution.J. Log. Comput. 7, (4):429–456, 1997.
22. D. Fisman, O. Kupferman, S. Sheinvald-Faragy, and M.Y. Vardi. A framework for inherent

vacuity. InHaifa Verification Conference, LNCS 5394, pages 7–22. Springer, 2008.
23. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In CAV, LNCS 2102,

pages 53–65. Springer, 2001.
24. J. Geldenhuys and H. Hansen. Larger automata and less work for LTL model checking. In

SPIN, LNCS 3925, pages 53–70. Springer, 2006.

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 15

25. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
Linear Temporal Logic. InPSTV, pages 3–18. Chapman & Hall, Aug 1995.

26. D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation of LTL
formulae to Büchi automata. InFORTE, Nov 2002.

27. V. Goranko, A. Kyrilov, and D. Shkatov. Tableau tool for testing satisfiability in LTL: Im-
plementation and experimental analysis.ENTCS 262, pages 113–125, 2010.

28. A. Habibi and S. Tahar. Design for verification of SystemCtransaction level models. In
Design, Automation and Test in Europe, pages 560–565. IEEE, 2005.

29. Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decisionalgorithm for full propositional
temporal logic. InCAV, LNCS 697, pages 97–109. Springer, 1993.

30. A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Computational
experiments. ZIB-Report 01–38, ZIB, 2001.

31. O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking.STTT 4,
(2):224–233, Feb 2003.

32. S. Merz and A. Sezgin. Emptiness of Linear Weak Alternating Automata. Technical report,
LORIA, December 2003.

33. G. Pan, U. Sattler, and M.Y. Vardi. BDD-based decision procedures for K. InCADE, LNCS
2392, pages 16–30. Springer, 2002.

34. I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti. Formal analysis of
hardware requirements. InDAC, pages 821–826. ACM, 2006.

35. A. Pnueli. The temporal logic of programs. InIEEE FOCS, pages 46–57, 1977.
36. A. Pnueli and R. Rosner. On the synthesis of a reactive module. InPOPL, p179–190, 1989.
37. L. Pulina and A. Tacchella. A self-adaptive multi-engine solver for quantified Boolean for-

mulas.Constraints 14, (1):80–116, 2009.
38. A. Cimatti R. Cavada, C. Jochim, G. Keighren, E. Olivetti, M. Pistore, M. Roveri, and

A. Tchaltsev. NuSMV 2.4 user manual. Technical report, CMU and ITC-irst, 2005.
39. M. Roveri. Novel techniques for property assurance. Technical report, PROSYD deliverable

1.2/2, 2004.
40. K.Y. Rozier and M.Y. Vardi. LTL satisfiability checking.In Model Checking Software

(SPIN), LNCS 4595, pages 149–167. Springer, 2007.
41. S. Ruah, A. Fedeli, C. Eisner, and M. Moulin. Property-driven specification of VLSI design.

Technical report, PROSYD deliverable 1.1/1, 2005.
42. K. Schneider. Improving automata generation for LinearTemporal Logic by considering the

automaton hierarchy. InLPAR, pages 39–54. Springer, 2001.
43. R. Sebastiani and S. Tonetta. “More deterministic” vs. “smaller” Büchi automata for efficient

LTL model checking. InCHARME, pages 126–140. Springer, 2003.
44. A.P. Sistla and E.M. Clarke. The complexity of Propositional Linear Temporal Logic.J.

ACM 32, pages 733–749, 1985.
45. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. InCAV, LNCS

1855, pages 248–263. Springer, 2000.
46. X. Thirioux. Simple and efficient translation from LTL formulas to Büchi automata.ENTCS

66, (2):145–159, 2002.
47. M.Y. Vardi. Automata-theoretic model checking revisited. InVMCAI, LNCS 4349, pages

137–150. Springer, 2007.
48. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-

tion. In LICS, pages 332–344, Cambridge, Jun 1986.
49. M.Y. Vardi and P. Wolper. Reasoning about infinite computations.Information and Compu-

tation 115, (1):1–37, Nov 1994.

16 Kristin Y. Rozier and Moshe Y. Vardi

Appendix A: LTL Semantics

Linear Temporal Logic (LTL) formulas are composed of a finite setProp of atomic
propositions, the Boolean connectives¬, ∧, ∨, and→, and the temporal connectivesU
(until), R (release),X (next time),G (globally), andF (in the future). We define LTL
formulas inductively:

Definition 5 For every p∈ Prop, p is a formula. If g, g1, and g2 are formulas, then so
are:
¬g g1 ∧ g2 g1 ∨ g2 g1→ g2 Xg g1U g2 g1 R g2 Gg F g

LTL formulas describe the behavior of the variables inProp over a linear series of
time steps starting at the present time (time step zero) and extending infinitely into the
future. We satisfy such formulas overcomputations, which are functions that assign
truth values to the elements ofPropat each time step [18].

Definition 6 We interpret LTL formulas over computations of the formπ : ω → 2Prop,
whereω is used in the standard way to denote the set of non-negative integers. We define
π, i � f (computationπ at time instant i∈ ω satisfies LTL formula f) as follows:

– π, i � p for p ∈ Prop if p∈ π(i).
– π, i � g1 ∧ g2 if π, i � g1 andπ, i � g2.
– π, i � ¬g if π, i 2 g.
– π, i � Xg if π, i + 1 � g.
– π, i � g1Ug2 if ∃ j ≥ i, such thatπ, j � g2 and∀k, i ≤ k < j, we haveπ, k � g1.
– π, i � g1Rg2 if ∀ j ≥ i, if π, j 2 g2, then∃k, i ≤ k < j, such thatπ, k � g1.
– π, i � F g if ∃ j ≥ i, such thatπ, j � g.
– π, i � Gg if ∀ j ≥ i, π, j � g.

We take models(f) to be the set of computations that satisfy f at time 0, i.e.,{π : π, 0 �
f }.

Appendix B: Universal Model and Benchmark Formulas From [40]

In [40] we showed how to relate LTL satisfiability checking toLTL model checking.
Suppose we have auniversal model Mthat generates all traces over its set of atomic
propositions,Prop; that is, we have thatLω(M) = (2Prop)ω. ThenM doesnot satisfy
¬ f if and only if f is satisfiable. We can use a model checker to check whetherf
is satisfiable by checking the formula¬ f against the universal model;f is satisfiable
precisely when the model checker finds a counterexample.

For example, iff = (X(aU b)), we provide the following input to CadenceSMV5:
module main () {

a : boolean;

b : boolean;

assert ˜(X(a U b));

FAIRNESS TRUE; }

5 The model for NuSMV is nearly identical. We need to add FAIRNESS to guarantee that the
model checker returns an infinite trace, which may not happenif there are no FAIRNESS
statements in the model.

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 17

The model checker negates the specification,¬ f , compiles the negated specification,f ,
into the symbolic automatonAf , and conjoinsAf with the universal model. IfAf is not
empty, the model checker finds a fair trace, which satisfies the formula f .

Input Formulas Utilizing the benchmarks established by [40], we evaluatedour set of
encodings using three types of scalable formulas: random formulas, counter formulas,
and pattern formulas. We experimented with both CadenceSMVand NuSMV as back-
ends for our encodings. Unlike in [40], correctness of the SAT/UNSAT answers was not
an issue. The only cases where we found disagreement were attributable to the subtle
semantic differences between CadenceSMV and NuSMV covered in Appendix C.

Random FormulasIn order to cover as much of the problem space as possible, we
generated random formulas as in [15]. We created 60 sets of 500 formulas each varying
the number of variables from 1 to 3, and the length of the formula from 5 to 200. We
refer to a formula with a total of 150 operators and atomic propositions as a “150 length
random formula.” We chose from the operator set{¬,∨,∧,X,U,R,G,F ,GF }. (We
included the combinationGF as a single operator because that combination occurs
so frequently in industrial specifications.) To create formulas with both a nontrivial
temporal structure and a nontrivial Boolean structure, theprobability of choosing a
temporal operator was 0.5. Other choices were decided uniformly. All formulas were
generated prior to testing for repeatability.

Counter FormulasTo measure performance on scalable, temporally complex formulas
with large state spaces, we tested our encodings on formulasthat describen-bit binary
counters with increasing values ofn. We know precisely the unique counterexample for
each counter formula and the requisite number of states for the automaton. We tested
four constructions of binary counter formulas, varying twofactors: number of variables
and nesting ofX’s.

We can represent a binary counter using two variables: a counter variable and a
marker variable to designate the beginning of each new counter value. Alternatively, we
can use 3 variables, adding a variable to encode carry bits, which eliminates the need
forU-connectives in the formula. We can nestX’s to provide more succinct formulas or
express the formulas using a conjunction of un-nestedX-sub-formulas. These formulas
were originally defined in [40].

Pattern Formulas We evaluated the efficacy of each encoding on specific temporal
operators using the eight patterns of scalable formulas defined by [24] plus one we
defined and callR2.

S(n) =
n
∧

i=1

Gpi , E(n) =
n
∧

i=1

F pi , Q(n) =
∧

(F pi ∨ Gpi+1),

U(n) = (. . . (p1U p2)U . . .)U pn, U2(n) = p1U (p2U (. . . pn−1U pn) . . .),

C1(n) =
n
∨

i=1

GF pi , C2(n) =
n
∧

i=1

GF pi .

18 Kristin Y. Rozier and Moshe Y. Vardi

R(n) =
n
∧

i=1

(GF pi ∨ FGpi+1), R2(n) = (. . . (p1 R p2) R . . .) R pn.

Since CadenceSMV does not acceptR operators, we eliminated them from our
LTLSPECs using the conversion (g1Rg2) ≡ ¬(¬g1U¬g2).

Appendix C: CadenceSMV and NuSMV Semantic Subtleties

We encountered one large, and several more subtle but still impactful differences be-
tween the implementations of CadenceSMV and NuSMV when testing our novel en-
codings. Most significantly, TGBA-encoded symbolic automata cannot be checked us-
ing NuSMV because variable definitions in terms ofDEFINE-statements may only as-
sign simple expressions composed of state variables. [38].Therefore, NuSMV cannot
parse thenext() operators in ourDEFINE section. NuSMV does not offer alternative
ways to define variables (e.g.ASSIGN-statements) which allow our TGBA construc-
tion.6

Though NuSMV cannot parse our TGBA-encoded automata, for all of the encod-
ings we could check with both SMV variants, we saw similar, significant improvements
when running PANDA with that model checker as a back-end, versus running the model
checker alone. As expected, we found our automata with NuSMVas a back end pro-
duced different timing results than the same automata with CadenceSMVas a back end,
just as running each of the tools alone produced different timing results, though neither
SMV was always faster. Both tools agreed on the satisfiability of a given LTL formula
100% of the time. Also, the results (either SAT or UNSAT) returned by CadenceSMV
and NuSMV always agreed with the results of running all 30 encodings of the same
formula. However, in order to compare our novel encodings across both SMV back-
ends, we had to account for several non-intuitive subtle semantic differences between
CadenceSMV and NuSMV.

While both basically use the CGH encoding, the precise semantics of CTL model
checking in CadenceSMV and NuSMV are not explicitly documented and the subtle,
often unexpected, differences between the implementations of the two tools complicates
the problem of creating alternative encodings. The following rules are necessary to work
around the several subtleties that arise when checking nonemptiness of fair symbolic
Büchi automata:

There must be at least one initial state.For both NuSMV and CadenceSMV, there
is an implicit universal quantifier over all initial states.If there are no initial states,
then the formula is automatically “true.” Declaring an initial state is not enough to
satisfy this condition. For example,INIT (a&(!a)) specifies that there is no initial
state. Similar semantic subtleties have impacted related work with SMV, such as model
checking temporal logic meta-property specifications for abstract state machines [2],
where the problem that this unexpected quantification over initial states means that
M |= EF(ϕ) . M 6|= AG(¬ϕ).

6 Thanks to Viktor Schuppan and the members of the NuSMV team for allowing our construc-
tion in future versions of NuSMV.

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 19

Symbolic automata must always have a FAIR statement, even ifit is “FAIR
true.” CadenceSMV considers terminal traces to be fair when there are no fairness con-
straints. A fair trace is defined to be a maximal trace on whichall fairness constraints
are true infinitely often, which includes terminal traces inmodels without fairness con-
straints. The semantics with a fairness constraint is the ”infinite traces” semantics where
states without infinite traces are discarded. Therefore, wemust have at least one fairness
constraint to prevent the possibility of a model with one initial state and no legal transi-
tions from model checking as “false.” Rather than the classical algorithm of implicitly
universally quantifying over all initial states, NuSMV restricts itself to all fair initial
states. If there are no fair initial states, the formula is automatically “true.”

The SPEC should be (! (ϕ ∧ EG true)). Both CadenceSMV and NuSMV consider
a CTL formulaϕ to hold in a modelM if ϕ holds inall initial states ofM. If M has no
initial states, then everyϕ holds inM. UsingSPEC (!(ϕ ∧ EG true)), if the model
is not empty, the counterexample returned is a trace of the model.
INIT ϕ SPEC !(EG true) is not equivalent toSPEC (!(ϕ ∧ EG true)). For

example, ifϕ is simply f alseand we checkSPEC (!(f alse ∧ EG true)), then the
check will pass (i.e. there will be no counterexample indicating satisfiability), since no
trace satisfiesf alse. If, however, we stateINIT f alseand checkSPEC !(EG true),
then the check will fail and a counterexample will be returned, which is clearly not
what we intended. Similarly, checking for a finite counterexample usingSPEC !(S f)
may produce spurious results.

Our symbolic TGBAs can be checked by CadenceSMV but not by NuSMV. In Ca-
denceSMV,next() statements may not be nested or present inINIT, FAIRNESS, or
SPEC statements. Our solution is to useEL-variables inINIT andSPEC statements and
use Promise vars inFAIRNESS statements. TGBA-formatted symbolic automata can-
not be checked using NuSMV because variable definitions (ieDEFINE-statements) may
only assign simple expressions composed of state variables. Therefore, NuSMV cannot
parse thenext() operators in ourDEFINE section. While NuSMVASSIGN-statements
do allownext() operators, they must occur alone on the left-hand-side of the assign-
ment, which still excludes our TGBA construction.

Appendix D: Proof of Theorem 3

Theorem 3 Let Mf be the SMV program generated by our symbolic TGBA encoding
for an LTL formula f . Then Mf does not satisfy the specification!(EL f & EG true)
iff f is satisfiable.

Proof. We prove each direction in turn.
Only if: If f is satisfiable then the specification!(EL f & EG true) does not

hold in M f .
If f is satisfiable, there is a traceπ = π0, π1, . . . ∈ (2Prop)ω such thatπ, 0 |= f (trace

π at time instant 0 satisfiesf), whereProp is the set of atomic propositions occurring
in f . To show that!(EL f & EG true) does not hold inM f , we need to exhibit an
infinite traceπ′ of M f such thatELf holds at point 0 ofπ′. A traceπ′ of M f is a trace
π′ = π′0, π

′
1, . . . ∈ (2Var(f))ω, whereVar(f) is the set of variables ofM f , consisting of:

20 Kristin Y. Rozier and Moshe Y. Vardi

– the atomic propositionsProp,
– the variableELg for each elementary formulag of f ,
– and a promise variablePg for eachU, F , andGF subformula off .

Note thatProp ⊆ Var(f). We defineπ′ as a conservative extension ofπ; that is,π′i ∩
Prop= πi , for all i ≥ 0. We define this extension as follows:

– for each elementary formulag of f , we have thatELg ∈ π
′
i iff π, i |= g (traceπ at

time instanti ∈ ω satisfies subformulag),
– for a subformulag of f , of the formh′Uh, F h or GF h, we have thatPg ∈ π

′
i iff

π, i |= g, butπ, i 6|= h.

Note that sincef is an elementary formula of itself andπ, 0 |= f , we immediately have
thatELf ∈ π

′
0.

It remains to show thatπ′ is a trace ofM f . To that end we first extendπ′. LetVar′(f)
be the set ofall variables inM f , including auxiliary variables. We defineπ′′ ∈ (2Var′(f))ω

as a conservative extension ofπ′; that is,π′′i ∩ Var(f) = π′i , for all i ≥ 0. We define this
extension as follows: for each subformulag of f , we have thatSg ∈ π

′′
i iff π, i |= g.

We now need to show that all the statements ofM f hold in π′′. EachTRANS state-
mentELg = Sg holds trivially, as for each elementary formulag of f , we have that
ELg ∈ π

′′
i iff π, i |= g iff Sg ∈ π

′′
i . TheDEFINE statements for∧, ∨, X, R, andG hold

because of the basic properties of the propositional and temporal connectives [18]. For
F -, U-, andGF -subformulas, we also have to take into account promise variables.
Consider, for example, a subformulah of the formF g, for which theDEFINE statement
is Sh = Sg|(PF g&next(ELF g)). SupposeSh ∈ π

′′
i , which means thatπ, i |= F g. We

know thatπ, i |= F g iff eitherπ, i |= g or bothπ, i 6|= g andπ, i + 1 |= h. If π, i |= g,
thenSg ∈ π

′′
i . If π, i 6|= g, thenPF g ∈ π

′′
i andELh ∈ π

′′
i+1. Conversely, ifSg ∈ π

′′
i , then

π, i |= g, which entails,π, i |= F g, and, consequently,Sh ∈ π
′′
i . Also, if ELh ∈ π

′′
i+1,

thenπ, i + 1 |= h, and, consequently,π, i |= h andSh ∈ π
′′
i . The arguments forU- and

GF -subformulas are similar.
Finally, we need to show that theFAIRNESS statement holds. That is, for each

promise variablePh there are infinitely manyi’s such thatPh 6|= π
′
i . Assume, for exam-

ple, thath is the subformulaF g. Suppose to the contrary that theFAIRNESS statement
fails. That is, there is somei0 ≥ 0 such thatPh ∈ π

′
i for all i ≥ i0. But this means that

π, i0 |= F g, andπ, i 6|= g for all i ≥ i0, which is impossible. The arguments forU- and
GF-subformulas are similar.

If: If M f does not satisfy the specification!(EL f & EG true) then f is satisfi-
able.

Suppose the specification!(EL f & EG true) does not hold inM f . Then, by defi-
nition, there is an infinite traceπ′ = π′0, π

′
1, . . . ∈ (2Var(f))ω of M f such thatELf holds at

point 0 ofπ′, whereVar(f), as defined above, corresponds to the set of atomic proposi-
tions in f , elementary formula variables, and promise variables. To show thatf is satisfi-
able, we show that the infinite traceπ = π0, π1, . . . ∈ (2Prop)ω, defined byπi = π

′
i ∩Prop

for i ≥ 0, satisfiesf at time 0; that is,π, 0 |= f .
Again, we first defineπ′′ ∈ (2Var′(f))ω as a conservative extension ofπ′, where

Var′(f) includesall variables inM f , including auxiliary variables. TheDEFINE state-
ments define each auxiliary variableSh in the characteristic function in terms of the set

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 21

of variables inVar(f), supplemented with an auxiliary variableSg corresponding to
each subformulag of h. Sinceπ′′ is defined overVar′(f), the values for the auxiliary
variables can be defined uniquely using the characteristic function.

We now prove that for every subformulah of f and∀i ≥ 0 we have thatSh ∈ π
′′(i)

entailsπ, i |= h. The proof is by induction onh.
Base case:For h = p ∈ Prop, we have thatSh = p. SoSh ∈ π

′′(i) iff p ∈ π(i) iff
π, i |= p. If h = ¬p, then we have thatSh =!p. SoSh ∈ π

′′(i) iff Sp < π
′′(i) iff π, i 6|= p

iff π, i |= h,
Induction step:Assume the claim holds for subformulasg, g1, g2 of f .

– h = g1 ∧ g2.
We have thatSh = Sg1&Sg2. SoSh ∈ π

′′(i) iff Sg1 ∈ π
′′(i) andSg2 ∈ π

′′(i), which
entailsπ, i |= g1 andπ, i |= g2, which entailsπ, i |= h.

– h = g1 ∨ g2.
We have thatSh = Sg1 ∨ Sg2. SoSh ∈ π

′′(i) iff Sg1 ∈ π
′′(i) or Sg2 ∈ π

′′(i), which
entailsπ, i |= g1 or π, i |= g2, which entailsπ, i |= h.

– h = Xg.
We have thatSh = next(EL g). SoSh ∈ π

′′(h) iff ELg ∈ π
′′(i + 1) iff (by theTRANS

statement)Sg ∈ π
′′(i + 1), which, by induction, entailsπ, i + 1 |= g, which entails

π, i |= h.
– h = g1U g2.

We have thatSh = Sg2 |(Sg1& Ph&(next(ELh))). SupposeSh ∈ π
′′(i). Then either

Sg2 ∈ π
′′(i) or Sg1 ∈ π

′′(i), Ph ∈ π
′′(i), andELh ∈ π

′′(i+1). Note that, by theTRANS
statement,ELh ∈ π

′′(i + 1) iff Sh ∈ π
′′(i + 1). Thus,Sg2 can be “postponed,” at the

cost of maintainingSg1 andPh. But theFAIRNESS statement implies that there is
some j : j ≥ i wherePh < π

′′(j). Choose the smallest suchj. Then we have that
Sg2 ∈ π

′′(j), and∀k : i ≤ k < j, we have thatSg1 ∈ π
′′(k). By induction,π, j |= g2,

and∀k, i ≤ k < j, we have thatπ, k |= g1. It follows thatπ, i |= h.
– h = g1 R g2.

We have thatSh = Sg2&(Sg1|(next(ELh)). SoSh ∈ π
′′(i) iff Sg2 ∈ π

′′(i) and either
Sg1 ∈ π

′′(i) or ELh ∈ π
′′(i + 1). Note that, by theTRANS statement,ELh ∈ π

′′(i + 1)
iff Sh ∈ π

′′(i + 1). It follows thatSg2 is “propagated” until “released” bySg1. That
is, if Sh ∈ π

′′(i) then∀ j : j ≥ i, eitherSg2 ∈ π
′′(j) or there is somek : i ≤ k < j,

such thatSg1 ∈ π
′′(k). By induction, for all j : j ≥ i, eitherπ, j |= g2 or there is

somek : i ≤ k < j, such thatπ, k |= g1. It follows thatπ, i |= h.
– h = Gg.

We have thatSh = Sg&(next(ELh)). SoSh ∈ π
′′(i) iffSg ∈ π

′′(i) andELh ∈ π
′′(i+1)

iff g ∈ π(i) and (by theTRANS statement)SG g ∈ π
′′(i + 1). It follows thatSg is

continually propagated. That is, ifSh ∈ π
′′(i), then, for all j : j ≥ i, we have that

Sg ∈ π
′′(j). By induction, for all j : j ≥ i, we have thatπ, j |= g. It follows that

π, i |= h.
– h = F g.

We have thatSh = Sg|(Ph&next(ELh)). SupposeSh ∈ π
′′(i). Then eitherSg ∈ π

′′(i)
or Ph ∈ π

′′(i) andELh ∈ π
′′(i+1). Note that, by theTRANS statement,ELh ∈ π

′′(i+1)
iff Sh ∈ π

′′(i + 1). Thus,Sg can be “postponed,” at the cost of maintainingPh. But
the FAIRNESS statement implies that there is somej : j ≥ i wherePh < π

′′(j).

22 Kristin Y. Rozier and Moshe Y. Vardi

Choose the smallest suchj. Then we have thatSg ∈ π
′′(j). By induction,π, j |= g.

It follows thatπ, i |= h.
– h = GF g.

We have thatSh = ((next(ELh)&(Sg|Ph). SupposeSh ∈ π
′′(i). ThenELh ∈ π

′′(i+1)
and eitherSg ∈ π

′′(i) or Ph ∈ π
′′(i). Note that, by theTRANS statement,ELh ∈

π′′(i + 1) iff Sh ∈ π
′′(i + 1). Thus, for all j : j ≥ i we have thatSh ∈ π

′′(j).
Again, we note thatSg can be “postponed” at the cost of maintainingPh. But the
FAIRNESS statement implies that for everyj : j ≥ i there is somek : k ≥ j where
Ph < π

′′(k). For eachj ≥ i, choose smallest suchk; call it k j. Then we have that
Sg ∈ π

′′(k j). By induction,π, k j |= g. It follows thatπ, i |= h.

By assumptionELf ∈ π
′′(0). By theTRANS statement it follows thatS f ∈ π

′′(0),
and thereforeπ, 0 |= f . Therefore,f is satisfiable.

Appendix E: Application Benchmarks

In order to demonstrate further that our PANDA encoding outperforms the native en-
coding of CadenceSMV for real-life LTL satifiability checking, we also tested both
tools on a set of application benchmarks, comprised of formulas used to specify actual
systems. Our application benchmark formulas come from six sources:7

1. acacia demo-v22:10 formulas
2. acacia demo-v3:6 formulas
3. acacia example:25 formulas
4. alaska szymanski:4 formulas
5. anzu amba:8 formulas
6. anzu genbuf:10 formulas

The acacia demo-v22, acacia demo-v3, andacacia exampleformulas are specifi-
cations for systems such as arbiters and traffic-light controllers, distributed with the
Acacia tool8 , as developed for a study on LTL realizability and synthesis[20]. The
alaska szymanskiformulas9 were developed as liveness properties for the Szymanski
mutual exclusion protocol for LTL satisfiability and model-checking [16]. The Anzu10

benchmarks are sets of formulas used for synthesizing industrial hardware systems
from specifications, combined into monolithic formulas forthe purpose of satisfiability
checking [6]. Theanzu ambaformulas are specifications for advanced microcontroller
bus architectures while theanzu genbufspecifications describe generalized buffers.

We applied PANDA and CadenceSMV to these 63 application benchmark formulas.
PANDA completed 51 formulas before spacing out, while CadenceSMV completed 45
formulas before spacing out. The comparison of the performance of CadenceSMV and
PANDA-best on these application benchmark formulas is plotted in Figure 12 using a

7 Thanks to Viktor Schuppan for suggesting these sources, providing some of the formulas in
SMV format, and constructing the Anzu formula combinations.

8 http://www.antichains.be/acacia/src/acacia_9_linux_i386.tar.gz
9 http://www.antichains.be/alaska/tacas08_experiments.zip

10 http://www.iaik.tugraz.at/content/research/design_verification/anzu/

A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking 23

classical cactus plot: the x-axis shows how many instances were checked in time less
than or equal to the runtime given on the y-axis, presuming they are run in parallel.
PANDA solved more formulas and in less time than CadenceSMV.

model analysis time (sec)

nu
m

be
ro

ff
or

m
ul

as

10-2 10-1 100 101 102 10322

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

PANDA
CadenceSMV

Cactus Plot: Application Benchmark Formulas

Fig. 12. Cactus plot: median model analysis
time over all application benchmarks for Ca-
denceSMV and the best PANDA encoding.

